Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования

«СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

	Б1.В.08 Физическая гидродинамика					
наименование дисциплины (модуля) в соответствии с учебным планом						
Направление подго	товки / специальность					
	03.04.02 Физика					
Направленность (пр	рофиль)					
	03.04.02.04 Физика Земли и планет					
Форма обучения	канио					
Год набора	2022					

РАБОЧАЯ ПРОГРАММА ЛИСШИПЛИНЫ (МОЛУЛЯ)

Программу составили							
Канд. физмат. наук, Доцент, Гаврилов А.А.							
	должность инициалы фамилия						

1 Цели и задачи изучения дисциплины

1.1 Цель преподавания дисциплины

Цель преподавания дисциплины: освоение базовых понятий и моделей физической гидродинамики, формирование умений выявления проблем и присущих им сложностей при решении прикладных задач механики жидкости и профессиональных задач, связанных с изучением геофизических явлений и процессов.

1.2 Задачи изучения дисциплины

Код и наименование индикатора

достижения компетенции

спутниковых данных

- 1. Сформировать основы целостной системы знаний о методах и построении моделей физической гидродинамики.
- 2. Сформировать умения выявления проблем и присущих им сложностей при решении прикладных задач механики жидкости и профессиональных задач, связанных с изучением геофизических явлений и процессов.

1.3 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

ПК-2: Способен владеть методами обработки, анализа, визуализации и

Запланированные результаты обучения по дисциплине

	ами обработки, анализа, визуализации и				
	нформации при решении научных и прикладных				
задач					
ПК-2.1: Обосновывает	Основы фундаментальной системы уравнений				
перспективы проведения	механики жидкости				
исследований, в том числе	Основные характеристики и закономерности				
комплексных, в области наук о	свободных и пристеночных сдвиговых течений				
Земле	Принципы построения, достоинства и недостатки				
	дифференциальных моделей, используемых в				
	области наук о Земле				
	Выполнять оценки параметров гидродинамических				
	процессов с помощью вычислительных методов				
	Обобщать и интерпретировать результаты				
	тематических исследований, основываясь на				
	наземных измерениях и данных ДЗЗ				
	Применять методы математического моделирования				
	при решении научных и прикладных задач				
	Навыками поиска научной информации по теме				
	исследования				
	Навыками и умениями применять на практике				
	основные понятия и физические модели,				
	используемые при решении научных и прикладных				
	задач				
	Навыками работы с базами данных научной				
	информации				
TTT 2 C					

с изучением геофизических явлений и процессов, на основе наземных и

ПК-3: Способен участвовать в разработке методов анализа в задачах, связанных

ПК-3.2: Использует математические модели, вычислительные методы и информационные технологии при решении геофизических задач

Общую постановку проблемы и вычислительные методы при решении геофизических задач Методы расчета турбулентных течений на основе экспериментальных данных Физические модели для изучения атмосферы и водных поверхностей Применять на практике основные понятия, математические и физические модели при решении геофизических задач Использовать современные информационные технологии для изучения геофических процессов и Выполнять численные оценки основных характеристик в рамках геофизических моделей Навыками формулирования задач научных исследований на основе экспериментальных данных Навыками и умением анализировать полученные наземные и спутниковые данные Навыками постановки задач, связанных с изучением геофизических явлений и процессов

1.4 Особенности реализации дисциплины

Язык реализации дисциплины: Русский.

Дисциплина (модуль) реализуется без применения ЭО и ДОТ.

2. Объем дисциплины (модуля)

	Всего,	e
Вид учебной работы	зачетных единиц (акад.час)	1
Контактная работа с преподавателем:	1,11 (40)	
занятия лекционного типа	0,67 (24)	
практические занятия	0,44 (16)	
Самостоятельная работа обучающихся:	1,89 (68)	
курсовое проектирование (КП)	Нет	
курсовая работа (КР)	Нет	
Промежуточная аттестация (Экзамен)	1 (36)	

3 Содержание дисциплины (модуля)

3.1 Разделы дисциплины и виды занятий (тематический план занятий)

	Контактная работа, ак. час.					. час.			
№ п/п	Модули, темы (разделы) дисциплины	Занятия лекционного типа		Занятия семинарского типа Семинары и/или Практические Практические				Самостоятельная работа, ак. час.	
				Практические занятия		Практикумы			
		Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС
1. M	одели механики жидкости	1	1		1			1	
	1. Фундаментальная система уравнений механики жидкости. Уравнения сохранения в интегральной и дифференциальной формах	4							
	2. Течение вязкой несжимаемой жидкости. Особенности течений. Динамика вихревых структур.	4							
	3. Понятие турбулентности. Статистическое описание турбулентности. Осреднение по Рейнольдсу. Уравнения Рейнольдса. Каскадный перенос энергии. Масштабы и спектр турбулентности. Гипотезы Колмогорова.	4							
	4. Простейшие решение уравнений Навье—Стокса. Уравнения сохранения кинетической, тепловой и полной энергий.			4					
	5. Свободные и пристеночные сдвиговые течения: основные характеристики и закономерности			4					

6.							34	
2. Гидродинамическая турбулентность								
1. Свободные сдвиговые течения: основные характеристики и закономерности. Турбулентный пограничный слой. Моделирование пристеночной турбулентности. Закон стенки.	4							
2. Модели вихревой вязкости, формулирование k-є модели. Калибровка k-є модели. Вырождение однородной изотропной турбулентности, однородное сдвиговое течение, логарифмический подслой турбулентного пограничного слоя.	4							
3. Характеристики вихреразрешающих методов: сетки, схемы, граничные условия, анализ результатов и т.д. Метод моделирования крупных вихрей (LES). Методы расчета турбулентных течений (классификация, сходства и различия, достоинства и недостатки)	4							
4. Турбулентность вязкой жидкости. Вывод уравнений Рейнольдса. Модели вихревой вязкости			4					
5. Формулировка двухпараметрических моделей. Пристеночные функции.			4					
6.							34	
Всего	24		16				68	

4 Учебно-методическое обеспечение дисциплины

4.1 Печатные и электронные издания:

- 1. Вентцель Е. С., Овчаров Л. А. Теория случайных процессов и ее инженерные приложения: учебное пособие для технических вузов (Москва: Высшая школа).
- 2. Ландау Л. Д., Лифшиц Е. М., Питаевский Л. П. Теоретическая физика: Т. VI. Гидродинамика: учеб. пособие : в 10-ти т.(Москва: ФИЗМАТЛИТ).
- 3. Зельдович Я. Б., Райзер Ю. П. Физика ударных волн и высокотемпературных гидродинамических явлений (Москва: Физматлит).
- 4. Грузман И. С., Киричук В. С., Косых В. П. Цифровая обработка изображений в информационных системах: учебник(Новосибирск: Издво НГТУ).
- 5. Веренич И. А. Механика жидкости и газа (гидродинамика): учеб.-метод. пособие к практ. занятиям(Минск: БНТУ).
- 4.2 Лицензионное и свободно распространяемое программное обеспечение, в том числе отечественного производства (программное обеспечение, на которое университет имеет лицензию, а также свободно распространяемое программное обеспечение):

4.3 Интернет-ресурсы, включая профессиональные базы данных и информационные справочные системы:

1. 1.http://cfd.spbstu.ru/agarbaruk/lecture/turb_models.html Лекционные материалы по курсу "Модели турбулентности".

5 Фонд оценочных средств

Оценочные средства находятся в приложении к рабочим программам дисциплин.

6 Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

Методика проведения занятий допускает как использование технических средств (проекторы, интерактивные доски), так и классические аудиторные занятия, обеспечиваемые стандартными материально-техническими средствами.

Лекционные аудитории должны быть оборудованы современным видеопроекционным оборудованием для презентаций, средствами звуковоспроизведения, экраном, и иметь выход в Интернет, а также иметь интерактивную доску или доску для письма маркерами.

Помещения для проведения семинарских занятий должны быть оснащены ЭВМ, а также иметь интерактивную доску или доску для письма маркерами, учебную мебель трансформенного типа.

Библиотека должна иметь рабочие места для студентов, оснащенные компьютерами с доступом к базам данных, локальную сеть университета и Интернет.

Наглядные пособия:

- а) демонстрационные пособия (таблицы, схемы, графики, диаграммы, видеофрагменты);
- б) пособия на основе раздаточного материала (карточки с заданиями и задачами, ксерокопии фрагментов первоисточников);
 - в) электронные презентации.